SCORE: ____/30 POINTS

NO CALCULATORS ALLOWED

The region bounded in the first quadrant by $y = x^2$, y = x + 6 and x = 0 is revolved around the y - axis. SCORE: _____/6 PTS Write, BUT DO NOT EVALUATE, an integral (or sum of integrals) for the volume of the solid using the disk or washer method.

The region bounded by $y = -x^2$ and y = 6x + 8 is revolved around the line y = 2.

SCORE: ____/9 PTS

[a] Write, BUT DO NOT EVALUATE, an integral (or sum of integrals) for the volume of the solid using the disk or washer method.

[b] Write, BUT DO NOT EVALUATE, an integral (or sum of integrals) for the volume of the solid using the shell method.

$$y=-x^{2} \rightarrow x=\pm\sqrt{-y}$$
 $x=-\sqrt{-y}$
 $y=6x+8 \rightarrow x=\pm(y-8)$
 $y=6x+8 \rightarrow x=\pm(y-8)$

The base of a solid is the region bounded by $y = \frac{10}{x}$ and y = 12 - 2x. Cross sections perpendicular to the

x – axis are equilateral triangles. Write, **BUT DO NOT EVALUATE**, an integral (or sum of integrals) for the volume of the solid.

Find the area between the curves $y = -3x^2 - 9x$ and $y = x^2 - x - 12$ over the interval $0 \le x \le 3$.

SCORE: /6 PTS

$$-3x^{2}-9x = x^{2}-x-12$$

$$0 = 4x^{2}+8x-12$$

$$0 = 4(x+3)(x-1)$$

$$x = -3, 1$$

 $-9x = x^{2} - x - 12$ $0 = 4x^{2} + 8x - 12$ $+ \int_{1}^{3} (x^{2} - x - 12 - (-3x^{2} - 9x)) dx$ =0 (-4x2-8x+12) dx 03 (4x2+8x-12)dx

=-\$(1)-4(1)+12(1)+\$(27-1)+4(9-1)-12(3-1 = -# -4+12+194+32-24=193+16=148

A solid is created by revolving a region around an axis of revolution. Sketch the region and find the equation of SCORE: ____/4 PTS the axis of revolution if the volume of the solid is $\pi \int ((4-e^y)^2-(4+y^2)^2) dy$.

WASHER METHOD HORIZONTAL CUT 4 VERTICALAXIS X = 4 X=ey - y=lnx X=-42

